La denominación rayos X designa a una radiación electromagnética, invisible, capaz de atravesar cuerpos opacos y de imprimir laspelículas fotográficas. Los actuales sistemas digitales permiten la obtención y visualización de la imagen radiográfica directamente en una computadora (ordenador) sin necesidad de imprimirla. La longitud de onda está entre 10 a 0,1 nanómetros, correspondiendo a frecuencias en el rango de 30 a 3.000 PHz (de 50 a 5.000 veces la frecuencia de la luz visible).



Definición

Los rayos X son una radiación electromagnética de la misma naturaleza que las ondas de radio, las ondas de microondas, los rayos infrarrojos, la luz visible, los rayos ultravioleta y los rayos gamma. La diferencia fundamental con los rayos gamma es su origen: los rayos gamma son radiaciones de origen nuclear que se producen por la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos, mientras que los rayos X surgen de fenómenos extranucleares, a nivel de la órbita electrónica, fundamentalmente producidos por desaceleración de electrones. La energía de los rayos X en general se encuentra entre la radiación ultravioleta y los rayos gamma producidos naturalmente. Los rayos X son una radiación ionizante porque al interactuar con la materia produce la ionización de los átomos de la misma, es decir, origina partículas con carga (iones).



Descubrimiento

La historia de los rayos X comienza con los experimentos del científico británico William Crookes, que investigó en el siglo XIX los efectos de ciertos gases al aplicarles descargas de energía. Estos experimentos se desarrollaban en un tubo vacío, y electrodos para generar corrientes de alto voltaje. Él lo llamó tubo de Crookes. Pues bien, este tubo, al estar cerca de placas fotográficas, generaba en las mismas algunas imágenes borrosas. Pese al descubrimiento, Crookes no continuó investigando este efecto.


Es así como Nikola Tesla, en 1887, comenzó a estudiar este efecto creado por medio de los tubos de Crookes. Una de las consecuencias de su investigación fue advertir a la comunidad científica el peligro para los organismos biológicos que supone la exposición a estas radiaciones.


Pero hasta el 8 de noviembre de 1895 no se descubrieron los rayos X; el físico Wilhelm Conrad Roentgen, realizó experimentos con los tubos de Hittorff-Crookes (o simplemente tubo de Crookes) y la bobina de Ruhmkorff. Analizaba los rayos catódicos para evitar la fluorescencia violeta que producían los rayos catódicos en las paredes de un vidrio del tubo. Para ello, crea un ambiente de oscuridad, y cubre el tubo con una funda de cartón negro. Al conectar su equipo por última vez, llegada la noche, se sorprendió al ver un débil resplandor amarillo-verdoso a lo lejos: sobre un banco próximo había un pequeño cartón con una solución de cristales de platino-cianuro de bario, en el que observó un oscurecimiento al apagar el tubo. Al encender de nuevo el tubo, el resplandor se producía nuevamente. Retiró más lejos la solución de cristales y comprobó que la fluorescencia se seguía produciendo, así repitió el experimento y determinó que los rayos creaban una radiación muy penetrante, pero invisible. Observó que los rayos atravesaban grandes capas de papel e incluso metales menos densos que el plomo.


En las siete semanas siguientes, estudió con gran rigor las características propiedades de estos nuevos y desconocidos rayos. Pensó en fotografíar este fenómeno y entonces fue cuando hizo un nuevo descubrimiento: las placas fotográficas que tenía en su caja estaban veladas. Intuyó la acción de estos rayos sobre la emulsión fotográfica y se dedicó a comprobarlo. Colocó una caja de madera con unas pesas sobre una placa fotográfica y el resultado fue sorprendente. El rayo atravesaba la madera e impresionaba la imagen de las pesas en la fotografía. Hizo varios experimentos con objetos como una brújula y el cañón de una escopeta. Para comprobar la distancia y el alcance de los rayos, pasó al cuarto de al lado, cerró la puerta y colocó una placa fotográfica. Obtuvo la imagen de la moldura, el gozne de la puerta e incluso los trazos de la pintura que la cubría.


Un año después ninguna de sus investigaciones ha sido considerada como casual. El 22 de diciembre, un día memorable, se decide a practicar la primera prueba con humanos. Puesto que no podía manejar al mismo tiempo su carrete, la placa fotográfica de cristal y exponer su propia mano a los rayos, le pidió a su esposa que colocase la mano sobre la placa durante quince minutos. Al revelar la placa de cristal, apareció una imagen histórica en la ciencia. Los huesos de la mano de Berta, con el anillo flotando sobre estos: la primera imagen radiográfica del cuerpo humano. Así nace una rama de la Medicina: la Radiología.


El descubridor de estos tipos de rayos tuvo también la idea del nombre. Los llamó "rayos incógnita", o lo que es lo mismo: "rayos X" porque no sabía que eran, ni cómo eran provocados. Rayos desconocidos, un nombre que les da un sentido histórico. De ahí que muchos años después, pese a los descubrimientos sobre la naturaleza del fenómeno, se decidió que conservaran ese nombre.


La noticia del descubrimiento de los rayos "X" se divulgó con mucha rapidez en el mundo. Röntgen fue objeto de múltiples reconocimientos, el emperador Guillermo II de Alemania le concedió la Orden de la Corona, fue honrado con la medalla Rumford de la Real Sociedad de Londres en 1896, con la medalla Barnard de la Universidad de Columbia y con el premio Nobel de Física en 1901.


El descubrimiento de los rayos "X" fue el producto de la investigación, experimentación y no por accidente como algunos autores afirman; W.C. Röntgen, hombre de ciencia, agudo observador, investigaba los detalles más mínimos, examinaba las consecuencias de un acto quizás casual, y por eso tuvo éxito donde los demás fracasaron. Este genio no quiso patentar su descubrimiento cuando Thomas Alva Edison se lo propuso, manifestando que lo legaba para beneficio de la humanidad.



Producción

Los rayos X son productos de la desaceleración rápida de electrones muy energéticos (del orden 1000eV) al chocar con un blanco metálico. Según la mecánica clásica, una carga acelerada emite radiación electromagnética, de este modo, el choque produce un espectro continuo de rayos X (a partir de cierta longitud de onda mínima). Sin embargo experimentalmente, además de este espectro continuo, se encuentran líneas características para cada material. Estos espectros —continuo y característico— se estudiarán más en detalle a continuación.


La producción de rayos X se da en un tubo de rayos X que puede variar dependiendo de la fuente de electrones y puede ser de dos clases: tubos con filamento o tubos con gas.


El tubo con filamento es un tubo de vidrio al vacío en el cual se encuentran dos electrodos en sus extremos. El cátodo es un filamento caliente de tungsteno y el ánodo es un bloque de cobre en el cual esta inmerso el blanco. El ánodo es refrigerado continuamente mediante la circulación de agua, pues la energía de los electrones al ser golpeados con el blanco, es transformada en energía térmica en un gran porcentaje. Los electrones generados en el cátodo son enfocados hacia un punto en el blanco (que por lo general posee una inclinación de 45°) y producto de la colisión los rayos X son generados. Finalmente el tubo de rayos X posee una ventana la cual es transparente a este tipo de radiación elaborada en berilio, aluminio o mica.


El tubo con gas se encuentra a una presión de aproximadamente 0.01 mmHg y es controlada mediante una válvula; posee un cátodo de aluminio cóncavo, el cual permite enfocar los electrones y un ánodo. Las partículas ionizadas de nitrógeno y oxígeno, presentes en el tubo, son atraídas hacia el cátodo y ánodo. Los iones positivos son atraídos hacia el cátodo e inyectan electrones a este. Posteriormente los electrones son acelerados hacia el ánodo (que contiene al blanco) a altas energías para luego producir rayos X. El mecanismo de refrigeración y la ventana son los mismos que se encuentran en el tubo con filamento.


Los sistemas de detección más usuales son las películas fotográficas y los dispositivos de ionización.


La emulsión de las películas fotográficas varía dependiendo de la longitud de onda a la cual se quiera exponer. La sensibilidad de la película es determinada por el coeficiente de absorción másico y es restringida a un rango de líneas espectrales. La desventaja que presentan estas películas es, por su naturaleza granizada, la imposibilidad de un análisis detallado pues no permite una resolución grande.


Los dispositivos de ionización miden la cantidad de ionización de un gas producto de la interacción con rayos X. En una cámara de ionización, los iones negativos son atraídos hacia el ánodo y los iones positivos hacia el cátodo, generando corriente en un circuito externo. La relación entre la cantidad de corriente producida y la intensidad de la radiación son proporcionales, así que se puede realizar una estimación de la cantidad de fotones de rayos X por unidad de tiempo. Los contadores que utilizan este principio son el contador Geiger, el contador Proporcional y el contador de destellos. La diferencia entre ellos es la amplificación de la señal y la sensibilidad del detector.



 
Rayos X
en fakiro.com
Astronomíahttp://astronomia.fakiro.comshapeimage_3_link_0

artículos                enciclopedia                más